Bayesian Filtering with Unknown Sensor Measurement Losses
نویسندگان
چکیده
This work studies the state estimation problem of a stochastic nonlinear system with unknown sensor measurement losses. If the estimator knows the sensor measurement losses of a linear Gaussian system, the minimum variance estimate is easily computed by the celebrated intermittent Kalman filter (IKF). However, this will no longer be the case when the measurement losses are unknown and/or the system is nonlinear or nonGaussian. By exploiting the binary property of the measurement loss process and the IKF, we design three suboptimal filters for the state estimation, i.e., BKF-I, BKF-II and RBPF. The BKF-I is based on the MAP estimator of the measurement loss process and the BKF-II is derived by estimating the conditional loss probability. The RBPF is a particle filter based algorithm which marginalizes out the loss process to increase the efficiency of particles. All the proposed filters can be easily implemented in recursive forms. Finally, a linear system, a target tracking system and a quadrotor’s path control problem are included to illustrate their effectiveness, and show the tradeoff between computational complexity and estimation accuracy of the proposed filters.
منابع مشابه
Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملOnline Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS me...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملSet-membership filtering for systems with sensor saturation
This paper addresses the set-membership filtering problem for a class of discrete time-varying systems with sensor saturation in the presence of unknown-but-bounded process and measurement noises. A sufficient condition for the existence of set-membership filter is derived. A convex optimisationmethod is proposed to determine a state estimation ellipsoid that is a set of states compatiblewith s...
متن کاملDecentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.07945 شماره
صفحات -
تاریخ انتشار 2018